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Subjects with Alzheimer’s disease (AD) show loss of cognitive functions and change in behavioral and functional state affecting the
quality of their daily life and that of their families and caregivers. A neuropsychological assessment plays a crucial role in detecting
such changes from normal conditions. However, despite the existence of clinical measures that are used to classify and diagnose
AD, a large amount of subjectivity continues to exist. Our aim was to assess the potential of machine learning in quantifying this
process and optimizing or even reducing the amount of neuropsychological tests used to classify AD patients, also at an early
stage of impairment. We investigated the role of twelve state-of-the-art neuropsychological tests in the automatic classification of
subjects with none, mild, or severe impairment as measured by the clinical dementia rating (CDR). Data were obtained from the
ADNI database. In the groups of measures used as features, we included measures of both cognitive domains and subdomains.
Our findings show that some tests are more frequently best predictors for the automatic classification, namely, LM, ADAS-Cog,
AVLT, and FAQ, with amajor role of the ADAS-Cogmeasures of delayed and immediatememory and the FAQmeasure of financial
competency.

1. Introduction

Dementia is a clinical syndrome which affected more than
35 million people worldwide in 2010, with new estimates of
48.1 million people for 2020 and numbers expected to almost
double every 20 years [1]. Alzheimer’s disease (AD) represents
the primary cause of neurodegenerative dementia [2].

To date, scientists have concentrated on untangling the
complex brain changes involved in the onset and progression
of AD. However, this pathology is correlated to cognitive
impairment, behavioral disturbance, and functional disabil-
ities, which greatly have an impact on the quality of daily life,
and is major problem for families, caregivers, and healthcare
institutions. It is thus crucial to detect such changes early
and to identify the level and the type of impairment in
the patients. This could facilitate the provision of optimal
support as soon as possible, in order to maintain their quality
of life for as long as possible. In addition, early detection
enables the disease to be monitored from its initial stage of

disability, possibly administering available treatments when
loss of functions is not yet advanced.

Neuropsychological assessment plays a crucial role in
detecting loss of cognitive functions and change in behavioral
and functional state from normal conditions. Specifically,
neuropsychological tests can detect dysfunctions in human
“cognitive domains” as a consequence of dysfunctions in
different neural networks and subnetworks caused by AD.
In 2013, the American Psychiatric Association published the
fifth edition of the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-5) [3]. DSM-5 defined six key domains
of cognitive function, namely, complex attention, executive
function, learning and memory, language, perceptual-motor
function, and social cognition, and each of these has sub-
domains. Identifying the domains and subdomains affected
in a patient helps in establishing the aetiology and severity
of the neurocognitive disorder. Neuropsychological tests can
measure different cognitive domains (e.g., language, learning,
and memory) and subdomains (e.g., long-term memory and
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recognition memory) [4]. However, despite the promising
results from several different tests, identifying the best ones,
as well as the best combination of tests to be used to classify
and diagnose AD, is still a matter of debate, and a large
amount of subjectivity continues to exist in the diagnostic
process [5, 6]. In fact, even the DSM-5 does not name any
proprietary tests. In addition, whether specific tasks are better
for detecting impairment than others is still unclear [7]. A
long list of neuropsychological tests is thus still considered
appropriate and subjects are addressed to intensive testing.
Optimizing or even reducing the amount of neuropsycholog-
ical tests used to classify AD patients, also at an early stage of
impairment, may be possible with no additional performance
costs, thus reducing the time intensity and cognitive stress of
the assessment.

Machine learning (ML) is an advanced computational
technique that can be used for automatic classification of
subjects with diagnostic purpose. Specifically, methods based
on ML are able to learn the relationship between input and
response variables of two given classes of subjects (e.g., nor-
mal and pathological subjects) and to use the learned model
to predict the response variable of a new (independent)
subject. ML was first adopted in medicine because of its
ability to deal with large and complex datasets [8].

Sophisticated ML methods have been applied in the field
of dementia in order to obtain a high level of accuracy in the
automatic classification of subject impairment [9]. However,
such methods have been extensively used with neuroimaging
studies on dementia (e.g., [10]) and there have been few
explicit attempts to use ML to assess cognitive, behavioral,
and functional measures.

In 2015, Weakley et al. [11] used ML and a combi-
nation of twenty-seven measures from a cohort of 272
subjects including cognitive, behavioral, and functional abil-
ities obtained from different neuropsychological tests (e.g.,
visual and verbal memory and language category fluency)
to automatically classify groups of patients with different
clinical dementia ratings (CDR), namely, CDR = 0, CDR =
0.5, and CDR = 1+ (i.e., 1 and 2).The CDR Scale is a five-point
semistructured interview between the patient and a reliable
informant (e.g., caregivers) designed to stage the severity of
dementia considering the state of the subject with respect
to memory, orientation, judgment and problem solving,
community affairs, home/hobbies, and personal care [12].
Weakley et al. [11] envisaged the potential of ML with respect
to traditional statistical approaches in fully automating the
diagnostic process by reducing time-consuming and sub-
jective manual analyses and producing reliable information
on the relationship between input (measures of cognitive,
behavioral, and functional abilities) and response variables
(CDR score) without the need of defining assumptions on
data [13]. The authors used ML (with respect to manual
classification) to explore many measure configurations (i.e.,
many combinations of measures), which was impossible to
analyze manually. The ML classifier selected a maximum of
six measures able to predict the CDR score (an accuracy of
98%, 82%, and 94% was obtained when classifying CDR =
1+ versus CDR = 0, CDR = 0.5 versus CDR = 0, and CDR
= 1 versus CDR = 0.5, resp.). The results showed that ML

was a stable and robust predictive model for a number of
approximately 200 participants.

A similar approachwas already reported by another study
in the literature [14], in which ML was applied to only seven
cognitive and behavioral attributes from a database of 765
subjects (together with their educational level and the clinical
estimation of the patient insight) to predict CDR scores (0,
0.5, 1, 2, and 3). However, these attributes were selected by
the authors and leaded to poor classification accuracy for the
mildly demented severity class (59%).

Given the results obtained by the two above-mentioned
studies, it would be interesting to consider the use of more
subdomains for the automatic classification, since it could
lead to an improvement in the predictive model and classi-
fication performance.

In this work, our aim was to assess the potential of
automatic classification in optimizing or even reducing the
amount of neuropsychological measures to predict cognitive,
behavioral, and functional impairment of subjects with AD,
even at an early stage. We investigated the role of twelve
state-of-the-art neuropsychological tests in the automatic
classification of subjects with none, mild, or severe impair-
ment as measured by CDR. Data were obtained from the
ADNI database (http://adni.loni.usc.edu/). In the groups
of measures used as classification features, we included
measures of both cognitive domains (language, executive
function, memory and learning, and complex attention) and
subdomains (perceptual-motor coordination, workingmem-
ory, and visuoconstructional reasoning). We also included
measures of depression and loss of awareness, more specif-
ically, orientation. In order to reduce the dimensionality of
the computation, we used the following two approaches:
(1) an automated classification following a computational
feature reductionmethod and (2) an automated classification
following a feature reduction guided by neuropsychologists.

2. Materials and Methods

2.1. Participants. Data used in the preparation of this article
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/). The
ADNI was launched in 2003 as a public-private partnership,
led by the principal investigator,MichaelW.Weiner,MD.The
primary goal of ADNI was to test whether serial magnetic
resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsy-
chological assessments can be combined to measure the
progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD); see http://www.adni-info.org/.

In our study, a total of 324 subjects were considered. This
sample is the same as in our previous study [10].

All subjects performed a CDR assessment at follow-
up (from at least 18 months to 36 months). The interview
included both answers directly obtained from each subject
and from the interviewer observing the subjects when per-
forming short and easy tasks.The CDR total score came from
the subscores of measures on memory, orientation, capacity
of judgment/problem solving, social and business activities,
capacity to make home-life/intellectual activities/hobbies,
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and personal care. In our work, the CDR score served as
a gold standard to classify each participant into one of the
following three categories: absence of impairment with CDR
= 0,mild impairment with CDR= 0.5, and severe impairment
with CDR = 1. In each category, subjects were matched for
age and gender. 126 subjects had CDR = 0 at follow-up, 143
subjects had CDR = 0.5, and 55 subjects had CDR = 1 at
follow-up.

2.2. Measures Used as Features. All subjects underwent a
neuropsychological assessment, starting from the screening
visit (visit at time = 0 of theADNI protocol) up to the baseline
(visit at time = 1 month from the screening in the ADNI
protocol) and following visits. The ADNI database provided
the raw results of this assessment in terms of total and partial
test scores.

In our work, we used both total and partial test scores as
measures to predict the classification category of subjects.

In order to ensure the independence among features
and the gold standard (CDR), we excluded the CDR test
from the neuropsychological measures used as features. This
avoided circularity in the classification process, thus reducing
overfitting.

In the next sections, we present a brief description of
the neuropsychological tests and relative measures used as
features.

2.2.1. Mini Mental State Examination (MMSE). MMSE is a
brief questionnaire developed by Folstein et al. [15] which
measures the global cognitive impairment and takes around
15 minutes to complete. It consists of 30 items divided into
6 areas: orientation in time and space; memory (repetition
of three words), attention and calculation (serial subtraction
or forward/backward spelling, recall of words previously
memorized); language (recognition of two objects, repetition
of a short sentence; sentence comprehension; sentence
writing), and constructional praxis (design copy). In our
study we used all of the 32 measures reported in the
ADNI database: MMDATE, MMYEAR, MMMONTH,
MMDAY, MMSEASON, MMHOSPIT, MMFLOOR,
MMCITY, MMAREA, MMSTATE, MMBALL, MMFLAG,
MMTREE,MMTRIALS,MMD,MML,MMR,MMO,MMW,
MMBALLDL, MMFLAGDL, MMTREEDL, MMWATCH,
MMPENCIL, MMREPEAT, MMHAND, MMFOLD,
MMONFLR, MMREAD, MMWRITE, MMDRAW, and
MMSCORE.

2.2.2. Clock Test. Participants are asked to draw a clock
and to set the hands to ten after eleven. Scores are
assigned if the symmetry of number placement, correct-
ness of numbers, and hand placement are correct. In our
study, we used all of the 12 measures reported in the
ADNI database: CLOCKCIRC, CLOCKSYM, CLOCKNUM,
CLOCKHAND, CLOCKTIME, CLOCKSCOR, COPYCIRC,
COPYSYM, COPYNUM, COPYHAND, COPYTIME, and
COPYSCOR.

2.2.3. Logical Memory (LM). This measures declarative/epi-
sodicmemory bymeans of a brief story read to the participant

who is asked to retell it from memory immediately. The
primary measure of performance is the number of story
units recalled. The LM is a subtest of the Wechsler Memory
Scale-Revised [16] and one of the most widely used clinical
measures ofmemory. In our study, we used all threemeasures
reported in the ADNI database: LIMMTOTAL, LDELTO-
TAL, and LDELCUE.

2.2.4. Rey Auditory Verbal Learning Test (AVLT). AVLT is a
widely used test of anterograde verbal episodic memory. A
list of 15 unrelatedwords is presented orally to the subject [17].
The test consists of 5 consecutive repetitions in order to learn
the unstructured verbal material and then a long delay free
recall 30 minutes later to verify if subject acquired the words
over the course of the 5 trials. Finally, a yes/no recognition
trial follows the delayed recall trial. It is possible to obtain a
learning score from AVLT using the difference between the
last and the first immediate recall trials.Themeasures that are
usually calculated from the AVLT are learning scores (trial 5
minus trial 1), short and long delay recall, and recognition.
In our study, we used all of the 18 measures reported in
the ADNI database: AVTOT1, AVERR1, AVTOT2, AVERR2,
AVTOT3,AVERR3,AVTOT4,AVERR4,AVTOT5,AVERR5,
AVTOT6, AVERR6, AVTOTB, AVERRB, AVDEL30MIN,
AVDELERR1, AVDELTOT, and AVDELERR2.

2.2.5. Digit Span (DS). DS is a test of working memory with
two subscales: forward and backward. In the DS forward, the
examiner reads a number sequences of increasing length and
asks the participant to repeat them. The total score is the
number of sequences correctly repeated. In DS backward, the
examiner reads a number sequence of increasing length and
then asks the participant to repeat each sequence backward.
The primary measure of performance is the number of digit
sequences correctly reversed. These two tests are included
in the Wechsler Memory Scale-Revised [16]. In our study,
we used all five measures reported in the ADNI database:
DSPANFOR,DSPANFLTH,DSPANBAC,DSPANBLTH, and
DIGITSCOR.

2.2.6. Category Fluency Tests (Animals and Vegetables). This
is a widely used measure of the ability to spontaneously
generate a set of semantically related words in one minute.
The participant is asked to name different examples of a given
category and the score is the number of unique examples
named. In our study, we used all six measures reported in
the ADNI database: CATANIMSC, CATANPERS, CATAN-
INTR, CATVEGESC, CATVGPERS, and CATVGINTR.

2.2.7. Trail Making Test A-B (TMT A-B). TMT A-B encom-
passes two trials, A and B [18]. The first part A is a test
of psychomotor processing speed and visual scanning. An
array of numbers on a page is presented to the subjects and
they are instructed to draw lines connecting the numbers
in sequential order within the time allowed. The second
part B provides cognitive flexibility measures: psychomo-
tor processing speed, visual scanning, and attentional set
shifting. An array of numbers and letters is presented to
the subjects and they are asked to draw connecting lines
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while alternating between numbers and letters in sequential
order. An additional commonly used measure is the time
to completion from parts A and part B minus part A. In
our study, we used all six measures reported in the ADNI
database: TRAASCOR, TRAAERRCOM, TRAAERROM,
TRABSCOR, TRABERRCOM, and TRABERROM.

2.2.8. Boston Naming Test (BNT). BNT assesses naming abil-
ity using 30 items [19]. Participants are asked to name a series
of visual stimuli (object images) with different frequencies
(ranging from high to low). If subjects are not able to come
up with the correct answer, they are provided with a cue. A
phonemic cue is providedwhen the participant can recognize
the purpose of the object but cannot retrieve the correct
name. In our study, we used all six measures reported in
the ADNI database: BNTSPONT, BNTSTIM, BNTCSTIM,
BNTPHON, BNTCPHON, and BNTTOTAL.

2.2.9. American National Adult Reading Test (ANART).
ANART is awidely accepted test to estimate premorbid verbal
levels of intelligence in dementing individuals. It consists of
50 orthographically irregular English words. Participants are
instructed to pronounce each word aloud, beginning at the
top of the list and continuing through to the end. In our study,
we used the measure ANARTERR reported within the ADNI
database.

2.2.10. Alzheimer’s Disease Assessment Scale-Cognitive Behav-
ior (ADAS-Cog). ADAS-Cog is composed of two parts,
the noncognitive subscale and the cognitive subscale, and
provides a measure index of global cognition. The tests
take around 30–40 minutes to administer. Twelve tests are
used to evaluate short-term memory (evocation of words;
word recognition; learning the instructions of a test); spatial-
temporal orientation; language skills (verbal skills, difficulty
in naming spontaneous speech, comprehension of spoken
language, naming objects and fingers, and execution of
commands); praxis; attention and concentration. The rating
of the majority of cognitive tests is assigned on the basis of
the performance of the patient in each single test, while, in
some cases, it is based on clinical estimates carried out by the
examiner in the course of conversation and other sessions.
The ADAS-Cog scores range from 0, which is equivalent to
the absence of problems, to amaximumof 70, which indicates
a serious deficit in all tests. For our study, we used all 15
measures reported in the ADNI database: Q1, Q2, Q3, Q4,
Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q14, TOTAL11, and
TOTALMOD.

2.2.11. Geriatric Depression Scale (GDS). GDS is a 30-
item self-report assessment used to identify mood changes
(i.e., depression) in elderly patients [20]. The exami-
nee has to provide yes/no answers to each item of the
GDS. For our study, we used all 16 measures reported
in the ADNI database: GDSATIS, GDDROP, GDEMPTY,
GDBORED, GDSPIRIT, GDAFRAID, GDHAPPY, GDHELP,
GDHOME, GDMEMORY, GDALIVE, GDWORTH, GDEN-
ERGY, GDHOPE, GDBETTER, and GDTOTAL.

2.2.12. Functional Assessment Questionnaire (FAQ). FAQ is
as a self-administered functional assessment which provides
information on the patient’s physical, psychological, social,
and role functions. It can be useduseful tomonitor the patient
over time with 0 score corresponding to no impairment and
30 to severely impaired. In our study, we considered all 11
measures reported in the ADNI database: FAQFINAN, FAQ-
FORM, FAQSHOP, FAQGAME, FAQBEVG, FAQMEAL,
FAQEVENT, FAQTV, FAQREM, FAQTRAVL, and FAQ total.

Finally, in our work, a total of 131 measures were used.
Table 1 shows the entire list of these measures, a short
description of what they represent together with the reference
tests.

2.3. Feature Normalization. Raw scores and subscores were
first normalized as 𝑧-scores, using the following formula:

𝑧-score = (score − 𝑚)𝑠 , (1)

where score represents the raw score or subscore of a given
test and 𝑚 and 𝑠 represent the mean and standard deviation,
respectively, of the raw score of the subjects.

2.4. Feature Reduction. Feature reduction was applied in
order to reduce the number of features to be classified
without losing relevant information, which resulted in an
improvement in computational performance. Two differ-
ent approaches were implemented: (a) a computational
approach, based on the mathematical discriminatory power
of features among classes, and (b) an approach based on
our basic understanding of the redundancy of features. More
specifically, in this last approach, our cognitive understanding
of the disease guided the model.

(a) Computation-Based Feature Reduction. The class discrim-
inatory power of 𝑧-scored features was estimated in terms of
Fisher’s Discriminant Ratio (FDR) as follows:

FDR = (𝜇1 − 𝜇2)
2

𝜎2
1
+ 𝜎2
2

, (2)

where 𝜇
𝑖
and 𝜎2

𝑖
are the mean and the variance of 𝑖th class,

respectively.

(b) Feature Reduction Guided by the Neuropsychologists. Two
experienced neuropsychologists were asked to reduce the
number of features on the basis of three primary consider-
ations: (1) redundancy (if the same or similar measures are
derived from two or more cognitive tests included in the
ADNI database: for example, itemQ7 of ADAS overlaps with
the MMSE items assessing spatiotemporal disorientation);
(2) overlap with CDR (if the same or similar measures
are present in the CDR interview which is used as a gold
standard for the classification: this could produce bias in the
classification performance); (3) poor relevance to AD (based
on scientific literature).

The features included in our classification fell within
the following domains: global cognitive status, orientation,
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Table 1: List of neuropsychological measures used as features.

Measure Description
1. MMDATE What is today's date?, MMSE
2. MMYEAR What year is it?, MMSE
3. MMMONTH What month is it?, MMSE
4. MMDAY What day of the week is it today?, MMSE
5. MMSEASON What season are we in?, MMSE

6. MMHOSPIT What is the name of this hospital (clinic,
place)?, MMSE

7. MMFLOOR What floor are we on?, MMSE
8. MMCITY What town or city are we in?, MMSE

9. MMAREA What county (district, borough, area) are
we in?, MMSE

10. MMSTATE What state are we in?, MMSE
11. MMBALL Ball, MMSE
12. MMFLAG Flag, MMSE
13. MMTREE Tree, MMSE
14. MMTRIALS Enter number of trials, MMSE
15. MMD D, MMSE
16. MML L, MMSE
17. MMR R, MMSE
18. MMO O, MMSE
19. MMW W, MMSE
20. MMBALLDL Ball, MMSE
21. MMFLAGDL Flag, MMSE
22. MMTREEDL Tree, MMSE

23. MMWATCH Show the participant a wrist watch and
ask “what is this?”, MMSE

24. MMPENCIL Repeat for pencil, MMSE

25. MMREPEAT Say “repeat after me: no ifs, ands, or
buts.”, MMSE

26. MMHAND Takes paper in right hand, MMSE
27. MMFOLD Folds paper in half, MMSE
28. MMONFLR Puts paper on floor, MMSE

29. MMREAD
Present the piece of paper which reads

“CLOSE YOUR EYES,” and say “read this
and do what it says”, MMSE

30. MMWRITE Give the participant a blank piece of
paper and say “write a sentence.”, MMSE

31. MMDRAW
Present the participant with the

Construction Stimulus page. Say “copy
this design.”, MMSE

32. MMSCORE MMSE total score, MMSE
33. CLOCKCIRC Approximately circular face, CLOCK
34. CLOCKSYM Symmetry of number placement, CLOCK
35. CLOCKNUM Correctness of numbers, CLOCK
36. CLOCKHAND Presence of the two hands, CLOCK

37. CLOCKTIME Presence of the two hands, set to ten after
eleven, CLOCK

38. CLOCKSCOR Total score, CLOCK
39. COPYCIRC Approximately circular face, CLOCK
40. COPYSYM Symmetry of number placement, CLOCK
41. COPYNUM Correctness of numbers, CLOCK

Table 1: Continued.

Measure Description
42. COPYHAND Presence of the two hands, CLOCK

43. COPYTIME Presence of the two hands, set to ten after
eleven, CLOCK

44. COPYSCOR Total score, CLOCK
45. LDELCUE Use of cue (0/1), LM

46. LDELTOTAL Total number of story units recalled,
Partial Score of LM test

47. LIMMTOTAL Total number of story units recalled, LM
Immediate Recall

48–53. AVTOT1-6 Total of each trial 1, 2, 3, 4, 5, 6, AVLT

54–59. AVERR1-6 Total intrusions of each trial 1, 2, 3, 4, 5, 6,
AVLT

60. AVTOTB Interference, AVLT
61. AVERRB Total intrusions of List B, AVLT
62. AVDEL30MIN 30 minute delay, AVLT
63. AVDELERR1 Total intrusions, AVLT
64. AVDELTOT Recognition, AVLT
65. AVDELERR2 Recognition errors, AVLT
66. DSPANFOR Forward: Total Correct
67. DSPANFLTH Forward: Length
68. DSPANBAC Digit Span Backwards, Total Correct
69. DSPANBLTH Backward: Length
70. DIGITSCOR Digit Symbol
71. CATANIMSC Category Fluency—Animals

72. CATANPERS Category Fluency
Animals—Perseverations

73. CATANINTR Category Fluency (Animals)—Intrusions

74. CATVEGESC Category Fluency Vegetables—Total
Correct

75. CATVGPERS Category Fluency (Vegetables)
—Perseverations

76. CATVGINTR Category Fluency
(Vegetables)—Intrusions

77. TRAAERRCOM Errors of commission, TMT
78. TRAAERROM Errors of omission, TMT
79. TRAASCOR Part A—time to complete, TMT
80. TRABERRCOM Error of commission, TMT
81. TRABERROM Error of omission, TMT
82. TRABSCOR Part B—time to complete, TMT

83. BNTSPONT Number of spontaneously given correct
responses, Partial Score of BNT

84. BNTSTIM Number of semantic cues given, Partial
Score of BNT

85. BNTCSTIM Number of correct responses following a
semantic cue, Partial Score of BNT

86. BNTPHON Number of phonemic cues given, Partial
Score of BNT

87. BNTCPHON Number of correct responses following a
phonemic cue, Partial Score of BNT

88. BNTTOTAL Total Number Correct (1 + 3)

89. ANARTERR ANART Total Score (total number of
errors)
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Table 1: Continued.

Measure Description
90. Q1 Word Recall Task, ADAS-Cog
91. Q2 Following commands, ADAS-Cog
92. Q3 Constructional praxis, ADAS-Cog
93. Q4 Delayed Word Recall, ADAS-Cog
94. Q5 Naming objects and fingers, ADAS-Cog
95. Q6 Ideational practice, ADAS-Cog
96. Q7 Orientation, ADAS-Cog
97. Q8 Word recognition, ADAS-Cog

98. Q9 Remembering test instructions,
ADAS-Cog

99. Q10 Comprehension of spoken and written
language, ADAS-Cog

100. Q11 Word finding difficulty, ADAS-Cog
101. Q12 Language, ADAS-Cog
102. Q14 Number cancellation, ADAS-Cog

103. TOTAL11 Classic 70 points total, excluding Q4 and
Q14, ADAS-Cog

104. TOTALMOD 85 points total, including Q4 and Q14,
ADAS-Cog

105. GDSATIS Are you basically satisfied with your life?,
Partial Score of GDS

106. GDDROP Have you dropped many of your activities
and interests?, Partial Score of GDS

107. GDEMPTY Do you feel that your life is empty?,
Partial Score of GDS

108. GDBORED Do you often get bored?, Partial Score of
GDS

109. GDSPIRIT Are you in good spirits most of the time?,
Partial Score of GDS

110. GDAFRAID
Are you afraid that something bad is

going to happen to you?, Partial Score of
GDS

111. GDHAPPY Do you feel happy most of the time?,
Partial Score of GDS

112. GDHELP Do you often feel helpless?, Partial Score
of GDS

113. GDHOME
Do you prefer to stay at home, rather than
going out and doing new things?, Partial

Score of GDS

114. GDMEMORY Do you feel you have more problems with
memory than most?, Partial Score of GDS

115. GDALIVE Do you think its wonderful to be alive
now?, Partial Score of GDS

116. GDWORTH Do you feel pretty worthless the way you
are now?, Partial Score of GDS

117. GDENERGY Do you feel full of energy?, Partial Score
of GDS

118. GDHOPE Do you feel that your situation is
hopeless?, Partial Score of GDS

119. GDBETTER Do you think that most people are better
off than you are?, Partial Score of GDS

120. GDTOTAL Total Score

121. FAQFINAN Writing checks, paying bills, or balancing
checkbook, Partial Score, FAQ

Table 1: Continued.

Measure Description

122. FAQFORM Assembling tax records, business affairs,
or other papers, Partial Score, FAQ

123. FAQSHOP
Shopping alone for clothes, household
necessities, or groceries, Partial Score,

FAQ

124. FAQGAME
Playing a game of skill such as bridge or
chess, working on a hobby, Partial Score,

FAQ

125. FAQBEVG Heating water, making a cup of coffee,
turning off the stove, Partial Score, FAQ

126. FAQMEAL Preparing a balanced meal, Partial Score,
FAQ

127. FAQEVENT Keeping track of current events, Partial
Score, FAQ

128. FAQTV
Paying attention to and understanding a
TV program, book, or magazine, Partial

Score, FAQ

129. FAQREM
Remembering appointments, family

occasions, holidays, medications, Partial
Score, FAQ

130. FAQTRAVL
Traveling out of the neighborhood,
driving, or arranging to take public
transportation, Partial Score, FAQ

131. FAQ total Total Score, FAQ

language, executive functioning, memory, praxis, attention,
working memory, visuospatial/constructional ability, func-
tional abilities, and depression, as shown in Table 2.

2.5. The Machine Learning Classifier. In order to automat-
ically classify subjects into different groups through the
considered neuropsychological measures, we used an ML
classifier based on methods previously published by our
group [21].

2.5.1. The Classification Algorithm. The classification algo-
rithm is based on Support Vector Machines (SVMs) [22],
which generate a predictive model to perform binary group
separation. The predictive model is designed as a hyperplane
computed using a training set of data as input to SVM.
This set consists of (1) a vector of samples belonging to two
different classes and (2) the corresponding vector of labels,
which identifies the class of each sample. During this training
phase, SVM computes a hyperplane to separate the samples
belonging to the two training classes. This hyperplane can
then be used as a predictive model to classify a new sample
into one or the other of the two classes. The predicted class 𝑦
for sample 𝑥 can be computed using the following formula:

𝑦 (𝑥) =
𝑁∑
𝑛=1

𝑤
𝑛
⋅ 𝑡
𝑛
⋅ 𝑘 (𝑥, 𝑥

𝑛
) + 𝑏, (3)

where 𝑁 is the number of samples included in the training
set; 𝑤

𝑛
is a weight assigned by SVM to each sample 𝑛 in the

training set during the training phase; 𝑡
𝑛
is the label of the
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sample 𝑛 of the training set; 𝑘(𝑥, 𝑥
𝑛
) is a kernel function; and

𝑏 is a threshold parameter.
We used theMatlab platform to implement the SVM clas-

sifier.Our code also included algorithms from the biolearning
toolbox of Matlab. Classification was performed using both
linear and nonlinear kernels for performance comparison,
the latter including a quadratic kernel, a Gaussian Radial
Basis Function (RBF) kernel with default sigma = 1, and
a Multilayer Perceptron kernel with default scale [1 −1].
For each subject, the CDR score was used as a label for all
classifiers.

2.5.2. Cut-Off on Features

(a) Computation-Based Features. 𝑍-scored features were
sorted in descending order according to their FDR. The 5%
features with highest FDR were retained for classification.

(b) Features Chosen by the Neuropsychologists. Each of the fea-
tures chosen by the neuropsychologists was used as input into
the classifier, thus obtaining individual feature classification
accuracy. Features were sorted in descending order according
to their classification accuracy. The top 10 features with the
highest accuracy were retained for classification.

2.5.3. Optimization of Features andEvaluation of Performance.
An optimization of features was performed in order to find
the combination of scores and subscores that return the best
performance for the classification of the different groups of
subjects.

For all kernels of the classifier, we performed a nested
10-fold Cross Validation (nested CV), which consists in (1)
splitting the original dataset into 10 subsets of (possibly) equal
size; (2) using 10-1 subsets to perform an inner training and
validation loop for the optimization of the features; (3) using
the 10th held-out subset to perform an outer test loop for
the evaluation of the optimized features. In order to test all
subsets, this procedure is then repeated 10 times.

Specifically, for each of the 10 rounds of the nested CV,
all possible combinations of the reduced features (scores and
subscores) were tested, for the two approaches described in
Section 2.4. For each of the 10 rounds of the outer loop,
accuracy, sensitivity, and specificity were calculated, and
results were averaged across all rounds.

In order to avoid problems arising from the use of class-
imbalanced datasets, which could lead to the classifier being
trained more on one class than the other (in a binary-
classification framework), the number of subjects in the two
classes was kept balanced in both the training and validation
sets.

We also evaluated the classification performance using
two specific metrics for imbalanced-domain problems,
namely, the GM of the true rates and the Dominance [23, 24].
These were computed as follows:

GM = √ TP
TP + FN ⋅

TN
FP + TN ,

Dominance = TP
TP + FN −

TN
FP + TN ,

(4)

whereTP (TN) is the number of true positives (negatives) and
FP (FN) is the number of false positives (negatives).

The whole nested CV process was repeated for 100
iterations in order to reduce statistical variability of results.
In fact, training and validation may depend on a particular
random choice for the pair of training and validation sets,
which could lead to a wrong classification performance
estimate. The use of an iterative procedure helps to prevent
this, because classification performances (as well as score
frequencies) are averaged across 100 iterations.

A classification was performed for the following three
comparisons: (1) CDR = 0.5 versus CDR = 0, (2) CDR = 1
versus CDR = 0.5, and (3) CDR = 1 versus CDR = 0.5.

2.5.4. Features as Best Predictors. Theoptimal combination of
features was chosen as the onewith themaximumaccuracy of
classification in the inner validation loop. Hence, we obtained
an optimal combination of features for each round of 10 and
for each iteration of 100, thus 1000 optimal combinations of
features.

In order to determine which features were the most
important for the classification, we computed the frequency
of each feature in all optimal combinations.The features were
sorted in descending order according to their frequency. The
top 10 features with the highest frequency were shown as the
best predictors.

3. Results

3.1. Feature Reduction

(a) Computation-Based Features. Figure 1 shows, as repre-
sentative example for one round and one iteration (CDR =
1 versus CDR = 0, round #1, iteration #1), features ordered
according to their FDR. The cut-off is shown reducing the
number of features to the 5%with highest FDR, thus reducing
the number from 131 to 7 features. Similar figures and results
have been obtained for all the other rounds and iterations.

(b) Features Chosen by the Neuropsychologists. Table 2 shows
the full list of features available from the ADNI database and
those chosen by the neuropsychologists (in bold). Features
are grouped into cognitive domains. The neuropsychologists
reduced the number of features from 131 to 32. The reasons
for exclusion are reported.

Figure 2 shows the features ordered according to their
individual classification accuracy for CDR= 1 versus CDR= 0
(a), CDR=0.5 versus CDR=0 (b), andCDR= 1 versus CDR=
0.5 (c). Accuracy was computed as an average over 10 rounds
and 100 iterations. The cut-off is shown reducing the number
of features to the top 10 with highest classification accuracy,
thus reducing the number from 32 to 10 features.

3.2. Optimization of Features and Evaluation of Performance

(a) Computation-Based Features. The classification perfor-
mance averaged over all 10 rounds and 100 iterations is shown
in Table 3 for CDR = 1 versus CDR = 0, Table 4 for CDR =
0.5 versus CDR = 0, and Table 5 for CDR = 1 versus CDR



Behavioural Neurology 11

Q
4

LI
M

M
TO

TA
L

TO
TA

LM
O

D
TO

TA
L1

1

Q
1

M
M

SC
O

RE
AV

TO
T4

AV
TO

T6
CA

TV
EG

ES
C

G
D

M
EM

O
RY

AV
TO

T5
FA

Q
RE

M
AV

D
EL

3
0

M
IN

AV
TO

T3
AV

TO
T2

AV
D

EL
TO

T
FA

Q
 to

ta
l

M
M

TR
EE

D
L

Q
8

M
M

FL
AG

D
L

FA
Q

FO
RM

FA
Q

FI
N

A
N

AV
ER

RB
M

M
BA

LL
D

L
AV

D
EL

ER
R2

M
M

D
AT

E Q
7

FA
Q

EV
EN

T
LD

EL
CU

E Q
5

FA
Q

SH
O

P
CA

TA
N

IM
SC Q
1
4

D
SP

A
N

BA
C

FA
Q

M
EA

L
D

IG
IT

SC
O

R
TR

A
BS

CO
R

FA
Q

TV
G

D
TO

TA
L

M
M

FL
O

O
R

AV
TO

TB
M

M
RE

PE
AT

D
SP

A
N

BL
TH

FA
Q

TR
AV

L
AV

TO
T1

A
N

A
RT

ER
R

FA
Q

G
A

M
E

BN
TP

H
O

N Q
6

BN
TS

PO
N

T
M

M
H

O
SP

IT
AV

ER
R5

BN
TT

O
TA

L
M

M
L

TR
A

A
SC

O
R

M
M

W
TR

A
BE

RR
CO

M
BN

TS
TI

M
TR

A
BE

RR
O

M
AV

ER
R4

G
D

H
EL

P
M

M
R

FA
Q

BE
VG Q
1
1

G
D

D
RO

P
M

M
H

A
N

D
G

D
W

O
RT

H
CA

TV
G

PE
RS

G
D

SP
IR

IT
M

M
YE

A
R

CL
O

CK
SY

M
CL

O
CK

TI
M

E Q
2

M
M

TR
IA

LS
AV

ER
R1

M
M

D
AY

D
SP

A
N

FL
TH

M
M

O
M

M
CI

TY
D

SP
A

N
FO

R
CL

O
CK

SC
O

R
M

M
A

RE
A

G
D

A
FR

A
ID

CO
PY

TI
M

E
G

D
BO

RE
D

G
D

BE
TT

ER
G

D
H

A
PP

Y
G

D
A

LI
V

E
BN

TC
PH

O
N

M
M

M
O

N
TH

CO
PY

SC
O

R
AV

ER
R3 Q
1
2

BN
TC

ST
IM

M
M

D
RA

W
M

M
FL

AG Q
3

CA
TV

G
IN

TR
TR

A
A

ER
RC

O
M

M
M

BA
LL

CL
O

CK
H

A
N

D
G

D
EN

ER
G

Y
AV

ER
R6 Q
1
0

CL
O

CK
CI

RC
M

M
SE

A
SO

N
M

M
W

RI
TE

CO
PY

N
U

M
CO

PY
SY

M
G

D
SA

TI
S

TR
A

A
ER

RO
M

CA
TA

N
IN

TR
M

M
ST

AT
E

M
M

D
M

M
W

AT
CH

M
M

PE
N

CI
L

M
M

RE
A

D
G

D
H

O
PE

CL
O

CK
N

U
M

G
D

H
O

M
E

M
M

O
N

FL
R

M
M

FO
LD

CA
TA

N
PE

RS
G

D
EM

PT
Y

CO
PY

CI
RC

CO
PY

H
A

N
D

AV
ER

R2
M

M
TR

EE
AV

D
EL

ER
R1 Q
9

LD
EL

TO
TA

L

0

0.5

1

1.5

2

2.5

FD
R

Figure 1: Representative example for one round and one iteration (CDR = 1 versus CDR = 0, round #1, iteration #1) of features ordered
according to their FDR.

Table 3: Performance of ML (accuracy, sensitivity, specificity, GM, and Dominance) in the classification of CDR = 1 versus CDR = 0 using
linear, quadratic, Gaussian RBF, and Multilayer Perceptron kernels. Results were obtained using the computation-based feature reduction.

Kernel Accuracy
[mean ± std]∗

Sensitivity
[mean ± std]∗

Specificity
[mean ± std]∗

Geometric Mean
[mean ± std]∗

Dominance
[mean ± std]∗

Linear 0.91 ± 0.07 0.89 ± 0.15 0.92 ± 0.08 0.90 ± 0.09 −0.03 ± 0.17
Quadratic 0.91 ± 0.07 0.87 ± 0.16 0.92 ± 0.08 0.89 ± 0.10 −0.05 ± 0.18
Gaussian RBF 0.92 ± 0.07 0.90 ± 0.14 0.93 ± 0.08 0.91 ± 0.09 −0.03 ± 0.16
Multilayer
Perceptron 0.91 ± 0.07 0.87 ± 0.16 0.93 ± 0.08 0.90 ± 0.10 −0.06 ± 0.18
∗Averaged across 10 rounds of the nested CV and across 100 iterations.

= 0.5. Accuracy, sensitivity, specificity, Geometric Mean, and
Dominance are reported. Each table shows the classification
results for linear, quadratic, Gaussian RBF, and Multilayer
Perceptron kernels.

Table 6 shows the classification performance in the inner
and outer loops of the nested CV for each of the 10 rounds
individually. Results (in terms of accuracy of classification)
were averaged over all 100 iterations and are shown for CDR
= 1 versus CDR = 0, CDR = 0.5 versus CDR = 0, and CDR =
1 versus CDR = 0.5.

As expected, the best classification performance (accu-
racy, sensitivity, and specificity > 0.89 for the linear kernel)
was obtained when discriminating subjects with moderate
problems from normal subjects. However, a good perfor-
mance (accuracy, sensitivity, and specificity > 0.85 for the
linear kernel) was also obtainedwhen discriminating subjects
with mild impairment from normal subjects. This result is
very important for patients, their families, and caregivers,
since it suggests that the detection of changes may already
be effective at an early stage of impairment. Thus, optimal
support may be established and monitored when the cogni-
tive abilities and independence of the subject have not already
been compromised.

The most difficult discrimination was between subjects
with mild and severe impairments (accuracy, sensitivity,
and specificity ranging from 59% up to 67% for the linear
kernel). This, however, has a minor impact on patients,
their families, and caregivers, since, if early detection of
behavioral changes is effective (see our consideration above),
the subject may already be managed and monitored as an
early dementia patient, and appropriate assistance and any
necessary treatment should have already been started.

The classification results using nonlinear kernels (i.e.,
quadratic, Gaussian RBF, and Multilayer Perceptron kernels)
are similar with those obtained using a linear kernel.

(b) Features Chosen by Neuropsychologists. Table 7 shows the
classification performance in terms of accuracy, sensitivity,
specificity, GeometricMean, andDominance averaged across
all 10 rounds and all 100 iterations. Results are reported for
CDR = 1 versus CDR = 0, CDR = 0.5 versus CDR = 0, and
CDR = 1 versus CDR = 0.5.

In Table 8, the classification performance in the inner
and outer loops of the nested CV for each of the 10 rounds
individually is shown. Accuracy of classificationwas obtained
as average over all 100 iterations. The performance for
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Figure 2: Features ordered according to their individual classification accuracy for CDR = 1 versus CDR = 0 (a), CDR = 0.5 versus CDR =
0 (b), and CDR = 1 versus CDR = 0.5 (c), using the feature reduction guided by the neuropsychologists. Results were obtained as average
across all rounds (10) and iterations (100) but for each feature independently. Features are ranked in descending significance with respect to
accuracy.
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Table 4: Performance of ML (accuracy, sensitivity, specificity, GM, and Dominance) in the classification of CDR = 0.5 versus CDR = 0 using
linear, quadratic, Gaussian RBF, and Multilayer Perceptron kernels. Results were obtained using the computation-based feature reduction.

Kernel Accuracy
[mean ± std]∗

Sensitivity
[mean ± std]∗

Specificity
[mean ± std]∗

Geometric Mean
[mean ± std]∗

Dominance
[mean ± std]∗

Linear 0.86 ± 0.07 0.85 ± 0.10 0.87 ± 0.10 0.86 ± 0.07 −0.01 ± 0.15
Quadratic 0.86 ± 0.07 0.85 ± 0.11 0.88 ± 0.09 0.86 ± 0.07 −0.03 ± 0.15
Gaussian RBF 0.86 ± 0.07 0.85 ± 0.10 0.87 ± 0.10 0.86 ± 0.07 −0.02 ± 0.15
Multilayer
Perceptron 0.85 ± 0.07 0.83 ± 0.12 0.87 ± 0.10 0.85 ± 0.07 −0.04 ± 0.16
∗Averaged across 10 rounds of the nested CV and across 100 iterations.

Table 5: Performance of ML (accuracy, sensitivity, specificity, GM, and Dominance) in the classification of CDR = 1 versus CDR = 0.5 using
linear, quadratic, Gaussian RBF, and Multilayer Perceptron kernels. Results were obtained using the computation-based feature reduction.

Kernel Accuracy
[mean ± std]∗

Sensitivity
[mean ± std]∗

Specificity
[mean ± std]∗

Geometric Mean
[mean ± std]∗

Dominance
[mean ± std]∗

Linear 0.65 ± 0.12 0.59 ± 0.22 0.67 ± 0.16 0.60 ± 0.16 −0.09 ± 0.30
Quadratic 0.65 ± 0.12 0.59 ± 0.23 0.67 ± 0.16 0.60 ± 0.16 −0.07 ± 0.30
Gaussian RBF 0.64 ± 0.12 0.61 ± 0.23 0.65 ± 0.16 0.60 ± 0.16 −0.05 ± 0.31
Multilayer
Perceptron 0.63 ± 0.12 0.62 ± 0.24 0.63 ± 0.17 0.60 ± 0.15 0 ± 0.33
∗Averaged across 10 rounds of the nested CV and across 100 iterations.

Table 6: Performance of ML (accuracy) in the inner and outer loops for each of the 10 rounds (averaged across 100 iterations). Results are
reported for CDR = 1 versus CDR = 0, CDR = 0.5 versus CDR = 0, and CDR = 1 versus CDR = 0.5 using a linear kernel and the computation-
based feature reduction.

Round
CDR = 1 versus CDR = 0 CDR = 0.5 versus CDR = 0 CDR = 1 versus CDR = 0.5

Inner loop
accuracy∗

Outer loop
accuracy∗

Inner loop
accuracy∗

Outer loop
accuracy∗

Inner loop
accuracy∗

Outer loop
accuracy∗

1 0.95 ± 0.02 0.91 ± 0.06 0.87 ± 0.03 0.87 ± 0.07 0.75 ± 0.03 0.64 ± 0.14
2 0.95 ± 0.02 0.90 ± 0.07 0.87 ± 0.03 0.85 ± 0.07 0.75 ± 0.03 0.65 ± 0.12
3 0.95 ± 0.02 0.91 ± 0.07 0.87 ± 0.02 0.85 ± 0.07 0.75 ± 0.03 0.65 ± 0.12
4 0.95 ± 0.02 0.92 ± 0.07 0.87 ± 0.03 0.87 ± 0.07 0.75 ± 0.03 0.65 ± 0.10
5 0.95 ± 0.02 0.92 ± 0.06 0.87 ± 0.03 0.85 ± 0.07 0.76 ± 0.04 0.62 ± 0.13
6 0.95 ± 0.02 0.91 ± 0.07 0.87 ± 0.03 0.87 ± 0.06 0.75 ± 0.03 0.66 ± 0.13
7 0.95 ± 0.02 0.91 ± 0.07 0.87 ± 0.02 0.86 ± 0.06 0.75 ± 0.03 0.66 ± 0.10
8 0.95 ± 0.02 0.91 ± 0.07 0.86 ± 0.03 0.86 ± 0.06 0.75 ± 0.03 0.64 ± 0.11
9 0.95 ± 0.03 0.90 ± 0.08 0.87 ± 0.03 0.85 ± 0.07 0.75 ± 0.03 0.65 ± 0.11
10 0.95 ± 0.03 0.92 ± 0.07 0.87 ± 0.03 0.86 ± 0.08 0.76 ± 0.03 0.64 ± 0.12
Total mean∗∗ 0.95 ± 0.01 0.91 ± 0.07 0.87 ± 0.01 0.86 ± 0.07 0.75 ± 0.01 0.65 ± 0.12
∗mean ± std averaged across 100 iterations; ∗∗mean ± std averaged across 100 iterations and 10 rounds.

Table 7: Performance of ML (accuracy, sensitivity, specificity, GM, and Dominance) in the classification of CDR = 1 versus CDR = 0.5, CDR
= 0.5 versus CDR = 0 and CDR = 1 versus CDR = 0.5. Results were obtained using the feature reduction guided by the neuropsychologists.

Level of impairment Accuracy
[mean ± std]∗

Sensitivity
[mean ± std]∗

Specificity
[mean ± std]∗

Geometric Mean
[mean ± std]∗

Dominance
[mean ± std]∗

CDR = 1 vs CDR = 0 0.96 ± 0.04 0.95 ± 0.10 0.97 ± 0.05 0.96 ± 0.06 −0.03 ± 0.11
CDR = 0.5 vs CDR = 0 0.86 ± 0.07 0.84 ± 0.10 0.89 ± 0.09 0.86 ± 0.07 −0.05 ± 0.13
CDR = 1 vs CDR = 0.5 0.69 ± 0.10 0.67 ± 0.21 0.70 ± 0.13 0.67 ± 0.13 −0.03 ± 0.26
∗Across 10 rounds of the nested CV and across 100 iterations.
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Table 8: Performance of ML (accuracy) in the inner and outer loops for each of the 10 rounds (averaged across 100 iterations). Results are
reported for CDR = 1 versus CDR = 0, CDR = 0.5 versus CDR = 0, and CDR = 1 versus CDR = 0.5 using a linear kernel and the feature
reduction guided by the neuropsychologists.

Round
CDR = 1 versus CDR = 0 CDR = 0.5 versus CDR = 0 CDR = 1 versus CDR = 0.5

Inner loop
accuracy∗

Outer loop
accuracy∗

Inner loop
accuracy∗

Outer loop
accuracy∗

Inner loop
accuracy∗

Outer loop
accuracy∗

1 1 ± 0.01 0.96 ± 0.05 0.91 ± 0.02 0.87 ± 0.07 0.81 ± 0.03 0.70 ± 0.11
2 1 ± 0.01 0.96 ± 0.05 0.91 ± 0.02 0.85 ± 0.06 0.81 ± 0.03 0.70 ± 0.10
3 1 ± 0.01 0.96 ± 0.05 0.91 ± 0.02 0.86 ± 0.06 0.81 ± 0.03 0.69 ± 0.10
4 0.99 ± 0.01 0.97 ± 0.04 0.91 ± 0.02 0.85 ± 0.07 0.81 ± 0.03 0.69 ± 0.09
5 0.99 ± 0.01 0.97 ± 0.04 0.91 ± 0.02 0.85 ± 0.06 0.81 ± 0.04 0.69 ± 0.10
6 0.99 ± 0.01 0.96 ± 0.05 0.91 ± 0.02 0.86 ± 0.06 0.81 ± 0.03 0.70 ± 0.11
7 0.99 ± 0.01 0.97 ± 0.04 0.91 ± 0.02 0.86 ± 0.07 0.80 ± 0.04 0.70 ± 0.11
8 0.99 ± 0.01 0.96 ± 0.04 0.91 ± 0.02 0.87 ± 0.05 0.81 ± 0.04 0.69 ± 0.10
9 0.99 ± 0.01 0.97 ± 0.04 0.91 ± 0.02 0.86 ± 0.07 0.80 ± 0.04 0.71 ± 0.10
10 0.99 ± 0.01 0.97 ± 0.05 0.91 ± 0.02 0.86 ± 0.07 0.81 ± 0.04 0.67 ± 0.11
Total mean∗∗ 0.99 ± 0.01 0.96 ± 0.04 0.91 ± 0.00 0.86 ± 0.07 0.81 ± 0.01 0.69 ± 0.10
∗mean ± std averaged across 100 iterations; ∗∗mean ± std averaged across 100 iterations and 10 rounds.

CDR = 1 versus CDR = 0, CDR = 0.5 versus CDR = 0, and
CDR = 1 versus CDR = 0.5 is reported.

As expected, also in this case, the best classification
performance (accuracy, sensitivity, and specificity > 0.95)
was obtained when discriminating subjects with moderate
problems from normal subjects. However, a good perfor-
mance (accuracy, sensitivity, and specificity > 0.84) was also
obtainedwhendiscriminating subjectswithmild impairment
from normal subjects. The most difficult discrimination was
distinguishing subjects withmild frommoderate impairment
(accuracy, sensitivity, and specificity ranging from 67% up to
70%).

The trend of the highest accuracy of classification as
a function of the configuration (number of features per
combination) is shown in Figure 3. The highest accuracy in
the inner loop of the nested CV is shown for CDR = 1 versus
CDR = 0 (blue), CDR = 0.5 versus CDR = 0 (red), and CDR
= 1 versus CDR = 0.5 (green). Results were obtained using
the features chosen by the neuropsychologists and averaged
across all 10 rounds and all 100 iterations.

As it can be seen, the performance of the model slightly
improves whenmore features are used as input into the classi-
fier, until reaching a plateau at about 5 features. Although the
performance of classification is different for each of the three
comparisons (CDR = 1 versus CDR = 0, CDR = 0.5 versus
CDR = 0, and CDR = 1 versus CDR = 0.5), the trend as a
function of the number of features considered is similar.

3.3. Features More Frequently Found as Best Predictors

(a) Computation-Based Features. Table 9 shows the top 10
features most frequently found as best predictors across all
10 rounds and all 100 iterations (i.e., most frequently found
in the combinations of features with the best classification
accuracy) using the FDR feature reduction. Features are
ranked by frequency in a descending order.
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Figure 3: Highest accuracy of classification as a function of the
configuration (combination of input features) in the inner loop of
the nested CV. Performances are reported for CDR = 1 versus CDR
=0 (blue), CDR=0.5 versusCDR=0 (red), andCDR= 1 versusCDR
= 0.5 (green), using the features chosen by the neuropsychologists.
Results were obtained as average across all rounds (10) and iterations
(100).

(b) Features Chosen by the Neuropsychologists. Table 10 shows
the top 10 features most frequently found as best predic-
tors among all 10 rounds and all 100 iterations (i.e., most
frequently found in the combinations of features with the
best classification accuracy) using the features chosen by the
neuropsychologists. Features are ranked by frequency in a
descending order.

The two approaches considered for the reduction of
features achieved similar results.

In CDR = 1 versus CDR = 0, both approaches found
the following features among best predictors: LDELTOTAL,
TOTALMOD, LIMMTOTAL, FAQTOTAL, Q4, Q1, and
TOTAL11. This is not unexpected, since previous studies
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Table 9: Top 10 features most frequently found as best predictors
across all 10 rounds and all 100 iterations using the FDR feature
reduction.

Level of
impairment Features Frequency∗

CDR = 1
versus CDR =
0

(1) LDELTOTAL (LM) 71%
(2) TOTALMOD (ADAS) 10%
(3) LIMMTOTAL (LM) 4%
(4) FAQTOTAL (FAQ) 4%
(5) Q4 (ADAS) 4%
(6) AVTOT5 (AVLT) 3%
(7) AVTOT4 (AVLT) 1%
(8) Q1 (ADAS) 0.8%
(9) AVDEL30MIN (AVLT) 0.6%
(10) TOTAL11 (ADAS) 0.5%

CDR = 0.5
versus CDR =
0

(1) LDELTOTAL (LM) 91%
(2) Q4 (ADAS-Cog) 22%
(3) LIMMTOTAL (LM) 15%
(4) TOTALMOD (ADAS-Cog) 12%
(5) GDHOPE (GDS) 6%
(6) MMD (MMSE) 2%
(7) MMSCORE (MMSE) 0.3%
(8) AVTOT4 (AVLT) 0.1%
(9) CATVEGESC (Semantic
Fluency Test) 0.1%

(10) TOTAL11 (ADAS) 0.1%

CDR = 1
versus CDR =
0.5

(1) FAQTOTAL (FAQ) 31%
(2) TOTALMOD (ADAS-Cog) 22%
(3) AVTOT5 (AVLT) 10%
(4) FAQFORM (FAQ)
(5) Q1 (ADAS-Cog)

6%
6%

(6) FAQREM (FAQ) 6%
(7) TOTAL11 (ADAS) 5%
(8) CLOCKSCOR (CLOCK Test) 4%
(9) CATVEGESC (Semantic
Fluency Test) 4%

(10) Q8 (ADAS) 4%
∗Across 10 rounds of the nested CV and across 100 iterations.

have demonstrated that long-term memory reflects the early
pathological involvement of the mediotemporal lobe in the
course of early AD [25], while functional abilities can occur
as a result of cognitive impairment [26].

AVTOT5, AVTOT4, and AVDEL30MIN were found
among best predictors when using the FDR-based feature
reduction. However, these measures were excluded by the
neuropsychologists because of their overlapping with Q1
(Word Recall Task, ADAS) and Q4 (Delayed Word Recall,
ADAS) of ADAS.

Q8 and MMSCORE were found among best predictors
when using the feature reduction guided by the neuropsy-
chologists. However, these measures were not among the
5% with the highest FDR and thus was excluded in the
computation-based classification. MMSCORE has already

Table 10: Top 10 features most frequently found as best predictors
across all 10 rounds and all 100 iterations using the features chosen
by the neuropsychologists.

Level of
impairment Features Frequency∗

CDR = 1
versus CDR =
0

(1) LDELTOTAL (Logical Memory
Test) 80%

(2) TOTALMOD (ADAS) 50%
(3) FAQ total (FAQ) 29%
(4) TOTAL11 (ADAS) 18%
(5) CATVEGESC (Semantic
Fluency Test) 13%

(6) Q4 (ADAS) 13%
(7) LIMMTOTAL (Logical
Memory) 9%

(8) Q8 (ADAS) 5%
(9) MMSCORE (MMSE) 5%
(10) Q1 (ADAS) 3%

CDR = 0.5
versus CDR =
0

(1) FAQ total (FAQ) 81%
(2) LDELTOTAL (Logical Memory
Test) 77%

(3) Q4 (ADAS) 44%
(4) TOTALMOD (ADAS) 39%
(5) CATVEGESC (Semantic
Fluency Test) 36%

(6) LIMMTOTAL (Logical
Memory) 30%

(7) MMSCORE (MMSE) 30%
(8) Q8 (ADAS) 23%
(9) TOTAL11 (ADAS) 19%
(10) Q1 (ADAS) 19%

CDR = 1
versus CDR =
0.5

(1) FAQ total (FAQ) 82%
(2) CLOCKSCOR (CLOCK Test) 36%
(3) Q8 (ADAS) 35%
(4) LDELCUE (Logical Memory
Test) 33%

(5) TOTAL11 (ADAS) 30%
(6) Q4 (ADAS) 29%
(7) TOTALMOD (ADAS) 22%
(8) LDELTOTAL (Logical Memory
Test) 20%

(9) CATVEGESC (Semantic
Fluency Test) 19%

(10) Q1 (ADAS) 18%
∗Across 10 rounds of the nested CV and across 100 iterations.

been found to discriminate early AD from CN with good
accuracy (about 70%) [27], while Q8 has been listed among
the useful memory and learning tests for AD detection.

In CDR = 0.5 versus CDR = 0, both approaches found
the following features as best predictors: LDELTOTAL, Q4,
LIMMTOTAL, TOTALMOD, MMSCORE, CATVEGESC,
and TOTAL11. Many studies on MCI patients have found
an impairment in long-term memory function [28, 29]. The
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measures that best predict the conversion to AD range from
immediate and delayed words recall [30] to verbal fluency.
The number of different vegetable names produced is a
fluency task that providesmeasures of language and executive
processes, including self-initiated activity, categorization, and
mental flexibility that are often involved in MCI patients
(e.g., [31, 32]). GDHOPE, MMD, and AVTOT4 were found
among the best predictors when using the computation-
based feature reduction, but not when using the feature
reduction guided by the neuropsychologists, because they
were excluded from the list of input features by these
neuropsychologists. These measures were excluded because
AVTOT4 overlaps with Q1 (Word Recall Task, ADAS), while
the other two measures were considered by the neuropsy-
chologists not highly significant in the MCI literature and
were not used to further our understanding of cognitive
impairment. FAQTOTAL, Q8, and Q1 were found among
the best predictors when the feature reduction was based
on neuropsychological expertise but not when using the
computation-feature reduction, because theywere not among
the 5%of featureswith the highest FDR retained for classifica-
tion. This result is in line with the current literature, since Q1
and Q8 are both measures of long-term memory, and FAQ
total has been recently reported as an important feature of
MCI [33].

In CDR = 1 versus CDR = 0.5, both approaches found the
following features among the best predictors: FAQTOTAL,
TOTALMOD, Q1, TOTAL11, CLOCKSCOR, CATVEGESC,
and Q8. Most of these features provide information on
episodic memory (Q1 and Q8), global cognitive status
(the global scores of ADAS and CLOCKSCOR), and lan-
guage/executive functions (CATVEGESC). Given the pri-
macy of memory in age-related cognitive impairment [34],
ML algorithms highlighted measures of episodic memory
(recalling information learned previously) as well as recogni-
tion memory (a nonverbal task that requires the recognition
of the words learned in a longer list of words presented with
distracter words). AVTOT5, FAQFORM, and FAQREMwere
found among best predictors when using the computation-
based feature reduction, but they were excluded from the list
of input features by the two neuropsychologists. The reason
for the exclusion was related to the overlap of AVTOT5
with Q1 (Word Recall Task, ADAS), while the other two
measures were considered by the neuropsychologists not
highly significant in the MCI/AD literature. LDELCUE, Q4,
and LDELTOTAL were found among best predictors when
the neuropsychologists guided the feature reduction but not
when using the automatic feature reduction because not
among the 5% features with the highest FDR retained for the
classification. Consistently with the literature, many studies
[34–36] have shown anterograde episodicmemory as the best
marker to predict the conversion to AD in subjects withMCI.

4. Discussion

The ability of neuropsychological measures to help in dis-
criminating between different degrees of cognitive impair-
ment has been widely recognized (e.g., [37, 38]). Despite
the existence of clinical measures that are used to classify

patients and diagnose clinical disorders showing cognitive
impairment, as AD, a large amount of subjectivity affects the
diagnostic process. Machine learning is emerging in clinical
neuropsychology and neurology as a credible technique to
support this process in a quantitative way.

Our work explored the contribution of cognitive, behav-
ioral, and functional measures in the automatic classification
of different stages of cognitive impairment using ML. Both
total and partial scores as measures of cognitive domains and
subdomains from a group of different neuropsychological
tests available from the ADNI database were considered as
potential predictors of cognitive impairment, even at an early
stage.

Our results showed that, among 131 measures considered,
it is possible to use a subset of measures in which the
classification accuracy is higher than 90% for severe (CDR
= 1) versus no impairment (CDR = 0) and higher than 85%
for mild (CDR = 0.5) versus no impairment (CDR = 0). Our
performances for these two comparisons are similar to those
obtained by Logie et al. [6]. These findings could have an
impact on the clinical process to perform early diagnosis,
with different benefits for patients. However, although we
did not include CDR = 2 in the group of patients with
severe impairment as Weakley et al. did, accuracy of our
classification for patients with CDR = 0.5 versus CDR = 1
was found limited (65–69%) suggesting that our work is in
progress and needs improvements. The automatic diagnosis
of AD is not challenging and we would expect that ML,
by using many features, would be able to predict mild
impairment better than subjective techniques. Our model
should be modified for this specific comparison in order to
achieve best accuracy.

From a methodological point of view, we used a lower
number of features than the smallest number of subjects in
each group (55 subjects with CDR = 1). This warrants that
no curse-of-dimensionality problems occurred. In addition,
the feature reduction strategies adopted in our study reduced
the number of features used as inputs for the classifier to
(at most) 10 (using the feature reduction guided by the
neuropsychologists). This number is much lower than the
number of subjects in the smallest group, thus avoiding
overfitting problems, especially considering the use of SVMs,
which are designed to handle high-dimensional data.

Concerning the final cognitive profile, when comparing
the fully automated classification to the classification guided
by the neuropsychologists, a good overlap of results between
the two classificationswas found. Some tests were foundmore
frequently among best predictors for the automatic classi-
fication, namely, LM, ADAS-Cog, AVLT, and FAQ, with a
major role of ADAS-Cogmeasures of delayed and immediate
memory and the FAQ measure of financial competency.

There are some measures known to be highly implicated
in AD that this model fails to identify. There are some tests
that are specifically recommended, that is, the Free and Cued
Selective Reminding Test (FCSRT), which is considered as a
valid clinical marker for AD [39]. This test was not included
in our model since it was not available in the ADNI dataset.
These tests provide specific episodic memory measures that
correlate with the hippocampal dysfunction, suggesting that
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a poor performance is typically registered in AD patients
[40].

In the field of neurodegenerative diseases, several other
studies have applied ML for the identification of subsets of
“optimal” classification predictors (e.g., [41, 42]), resulting
in a subset of optimal measures, in particular measures
of decline in episodic memory. A similar approach has
been used for the evaluation of linguistic features within
a language test for patients with AD [43–46]. They show
the potential of ML in determining the best predictors for
language impairment in these patients. Some other studies
have investigated this contribution in the classification of AD.

Promising results on similar approaches have been also
published in the field of psychiatric disorders. An interesting
study by Costafreda et al. [47] showed that pattern recogni-
tion algorithms coupled with verbal fluency have a reliable
diagnostic power in differentiating schizophrenic patients
from healthy controls and patients affected by bipolar disor-
ders. Pina-Camacho et al. [48] used SVM to study predictors
of schizophrenia in early-onset first episodes of psychosis.
They found that, among the variables included, neuropsycho-
logical measures (impaired attention, motor coordination,
and global cognition) showed the highest predictive value
for a diagnostic outcome of the disease. A study on autism
spectrumdisorder [49] showed that cognitivemeasures could
be a useful aid to the diagnostic process when assessed by
an SVM classifier. However, limitations of these studies were
related to the use of cognitive, behavioral, and functional
measures during the diagnostic classification of subjects used
as a gold standard of analysis, thus inducing overfitting (e.g.,
[50–52]). In our study, gold standard measures (CDR in
our case) were independent from measures used as features.
This excluded any potential bias due to circularity in the
classification process.

Overall, the results of our work show thatML provides an
effective technique to quantify the process to classify patients
and to diagnose clinical disorders by using neuropsycho-
logical measures. Combined with multicenter databases that
collect information from a substantial number of patients (as
the ADNI database used in our work), ML was proven to be
suitable to conduct statistically meaningful machine learning
calculations and to assist clinicians in the optimization of the
best measures (and submeasures) to be used, reducing at the
same time the subjectivity of the process. For example, we
have shown how ML can support the selection of important
subscores for the classification of subjects. This could be
useful in the optimization of current neuropsychological tests
or in the design of new tests for next-generation cognitive
assessment.

Notably, cognitive measures found in our works cannot
be considered sufficient to perform a neuropsychological
classification of patients and we cannot conclude that they
are the best predictors from a cognitive perspective, for
many reasons. For computation reasons, we have adopted
two different strategies to reduce the number of features
as input to classification; both strategies have limited the
measures used by the machine learning to select the optimal
predictors. Furthermore, other measures not included in
the considered studies could be behavioral data providing

a thorough description of the disease (e.g., loss of empathy,
disinhibition, and apathy).Thesemeasures could improve the
model. In addition, our findings need to be verified in other
independent databases and by using other machine learning
algorithms, thus proving the generality of our results.

In conclusion, ML approaches can be a useful tool for
clinical neuropsychologists especially when they need to deal
with a huge amount of data and the level of subjectivity
of the process must be reduced. Given that a higher level
of accuracy in classification still needs to be achieved and
that some questions remain unanswered, further validations
and verifications are needed in future research. However, we
believe that this study represents a step towards achieving the
goal of automatic classification of AD patients by means of
clinical neuropsychological assessment.
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